Cristaux quantiques : de la plasticité quantique à la supersolidité (22 sept. 2011)

Le premier séminaire du département pour l’année 2011-2012 aura lieu le 22 septembre 2011 à 14h à l’Amphi 8 de la faculté des sciences. Sébastien Balibar du laboratoire de Physique Statistique de l’Ecole Normale Supérieure (Paris) nous parlera de

« Cristaux quantiques : de la plasticité quantique à la supersolidité »

Nous avons découvert qu’un cristal d’hélium 4 sans aucune impureté est anormalement mou. Cette plasticité anormale est une conséquence de la grande mobilité de ses défauts, des dislocations qui peuvent se déplacer par effet tunnel quantique sur de très grandes distances (une fraction de millimètre) à grande vitesse (plusieurs mètres par seconde). Une telle mobilité serait impensable dans un cristal classique à basse température. Dans un cristal quantique comme l’hélium solide,  où l’agitation des atomes reste grande même près du zéro absolu,  le mouvement des défauts est susceptible de diviser la rigidité par dix. Cependant, d’infimes traces d’impuretés (de l’hélium 3) suffisent à empêcher le mouvement des dislocations en s’attachant à celles-ci en dessous de 0,1 Kelvin. Apparemment, c’est ce qui permet à l’hélium 4 solide de passer à l’état “supersolide”, un état de la matière étonnant qui serait à la fois  solide et superfluide parce que cette matière pourrait couler sans dissipation le long du cœur des dislocations… mais à condition que celles-ci soient fixes.

Mécanique et croissance des tissus (17 mars 2011)

Jean-François Joanny, de l’Institut Curie, donnera un séminaire le jeudi 17 mars 2011 à 14h, Amphi 8

« Mécanique et croissance des tissus »

Dans cet exposé, nous présentons nos résultats récents sur la mécanique et la croissance de tissus sains ou cancéreux. Nous montrons tout d’abord que sur des échelles de temps longues, à cause du couplage entre la contrainte local et la division cellulaire un tissu doit être considéré comme un liquide.
Nous montrons ensuite des expériences qui illustrent ce comportement liquide et qui permettent de mesurer la pression du tissu.
Nous présentons aussi des simulations numériques de la croissance et de  la rhéologie du tissu.
Dans la dernière partie, nous utilisons ces idées pour étudier la forme et
l’oganisation des villis qui sont les structure de la paroi intestinale.

Dynamique des matériaux cellulaires: l’exemple des mousses de savon (26 jan. 2011)

François Graner de l’Institut Curie (Paris) donnera une conférence le 26 janvier 2011 à 10h30 sur le thème:
« Dynamique des matériaux cellulaires: l’exemple des mousses de savon »

Les mousses liquides sont constituées de bulles de gaz entourées par de l’eau. Elles ont de nombreuses applications bien au-delà de la vie quotidienne, et ont des propriétés d’équilibre particulières.

Les mousses sont un modèle pour comprendre les matériaux complexes qui se comportent à la fois comme des solides et comme des liquides. Tout d’abord, si elle subit une petite déformation, une mousse peut revenir à sa forme initiale (comportement élastique). Ensuite, après une grande déformation, elle peut être sculptée (comportement plastique). Enfin, à grand taux de déformation, elle s’écoule comme un liquide (comportement visqueux).

Ce triple comportement peut maintenant être compris, grâce à une expérience dans un canal où la mousse s’écoule autour d’un obstacle. Les simulations et la théorie ont permis de relier la description de la bulle et le niveau global de la mousse, permettant des prédictions de l’écoulement de la mousse qui ont été testées avec succès.

Alors qu’une cellule biologique n’a presque aucun point commun avec une bulle, nous avons montré qu’un agrégat de cellules peut être décrit avec des outils analogues à ceux construits pour les mousses. Nous appliquons maintenant cette approche au développement de tissus vivants dans la mouche du fruit (drosophile).

La Mesure du Temps et Tests Fondamentaux (7 déc. 2010)

Séminaire du Département de Physique et Mécanique en co-organisation avec la SFP section Lorraine :

La Mesure du Temps et Tests Fondamentaux,
le 7 décembre 2010 à 14h, Amphi 8,
par Christophe Salomon, Laboratoire Kastler Brossel de l’Ecole Normale Supérieure, Paris, France

Nous commencerons par rappeler  le principe des horloges atomiques, les outils actuellement les plus précis pour les mesures de temps. L’unité de temps du système SI, la seconde, est réalisée aujourd’hui avec une exactitude de 3.10-16 en  valeur relative avec des fontaines utilisant des atomes ultrafroids de césium. Ces dispositifs conduisent à une erreur qui ne dépasse pas une seconde tout les 100 millions d’années. Les horloges optiques qui fonctionnent dans la partie visible du spectre électromagnétique ont fait des progrès spectaculaires ces dernières années et atteignent  aujourd’hui une stabilité de fréquence de 8.10-18 et ouvrent des perspectives nouvelles pour les applications.

Nous décrirons ensuite les tests de physique fondamentale qui peuvent être réalisés avec des horloges sur terre et dans l’espace. En comparant des horloges de nature différente, de nouvelles limites sont établies pour une éventuelle variation des constantes fondamentales comme la constante de structure fine alpha caractérisant l’interaction électromagnétique. Les peignes de fréquence permettant de relier horloges micro-ondes et optiques de façon très simple ouvrent de nouvelles possibilités pour ces comparaisons d’horloges. La mission spatiale PHARAO/ACES, développée par l’ESA et le CNES, installera en 2013 à bord de la station spatiale internationale deux horloges atomiques ultrastables, une horloge à atomes de césium froids et un maser à hydrogène. Ces horloges seront comparées à des horloges au sol par un lien micro-onde de haute performance permettant un test du décalage gravitationnel vers le rouge (effet Einstein) au niveau de 2.10-6 et une recherche globale de variation des constantes fondamentales.  Un nouveau type de géodésie relativiste utilisant l’effet Einstein permettra d’accéder à une détermination du géoïde terrestre, qui viendra compléter les déterminations récentes obtenues par les missions de géodésie spatiale.